Divalent Ions and the Surface Potential of Charged Phospholipid Membranes

نویسندگان

  • S. G. A. McLaughlin
  • G. Szabo
  • G. Eisenman
چکیده

Phospholipid bilayer membranes were bathed in a decimolar solution of monovalent ions, and the conductance produced by neutral carriers of these monovalent cations and anions was used to assess the electric potential at the surface of the membrane. When the bilayers were formed from a neutral lipid, phosphatidylethanolamine, the addition of alkaline earth cations produced no detectable surface potential, indicating that little or no binding occurs to the polar head group with these ions. When the bilayers were formed from a negatively charged lipid, phosphatidylserine, the addition of Sr and Ba decreased the magnitude of the surface potential as predicted by the theory of the diffuse double layer. In particular, the potential decreased 27 mv for a 10-fold increase in concentration in the millimolar-decimolar range. A 10-fold increase in the Ca or Mg concentration also produced a 27 mv decrease in potential in this region, which was again due to screening, but it was necessary to invoke some specific binding to account for the observation that these cations were effective at a lower concentration than Ba or Sr. It is suggested that the ability of the alkaline earth cations to shift the conductance-voltage curves of a nerve along the voltage axis by 20-26 mv for a 10-fold increase in concentration may be due to essentially a screening rather than a binding phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction of Some Divalent Metal Ions (Cadmium, Nickel and Lead) from Different Tea and Rice Samples Using Ghezeljeh Nanoclay (Geleh-Sar-Shoor) as a New Natural Sorbent

This article presents the method of extraction-preconcentration of Lead, Cadmium, and Nickel ions from food samples using the Ghezeljeh montmorillonite nanoclay (Geleh-Sar-Shoor) as a new native adsorbent in batch single component systems. The extraction-preconcentration of heavy metals were carried out by applying the solid phase extraction (SPE) method followed by atomic abs...

متن کامل

Molecular mechanism of calcium-induced adsorption of DNA on zwitterionic phospholipid membranes.

Interaction of DNA with zwitterionic phospholipids is an important long-standing problem in the field of liposome-based gene delivery. Although it is well-established that divalent cations can promote formation of stable DNA-phospholipid complexes, the underlying molecular mechanism remains largely unknown. Here we employ computer simulations to gain atomistically resolved insight into the kine...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers.

The Hofmeister series illustrates how salts produce a wide range of effects in biological systems, which are not exclusively explained by ion charge. In lipid membranes, charged ions have been shown to bind to lipids and either hydrate or dehydrate lipid head groups, and also to swell the water layer in multi-lamellar systems. Typically, Hofmeister phenomena are explained by the interaction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 58  شماره 

صفحات  -

تاریخ انتشار 1971